Model selection for integrated autoregressive processes of infinite order

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model selection for integrated autoregressive processes of infinite order

Choosing good predictive models is an important ingredient in a great deal of statistical research. When the true model is relatively simple and can be parameterized by a prescribed finite set of parameters whose values are unknown, it is natural to ask whether a model selection criterion can exclude all redundant parameters, thereby achieving prediction efficiency through the most parsimonious...

متن کامل

Model Identification for Infinite Variance Autoregressive Processes

We consider model identification for infinite variance autoregressive time series processes. It is shown that a consistent estimate of autoregressive model order can be obtained by minimizing Akaike’s information criterion, and we use all-pass models to identify noncausal autoregressive processes and estimate the order of noncausality (the number of roots of the autoregressive polynomial inside...

متن کامل

Bayesian Model Selection for Beta Autoregressive Processes

We deal with Bayesian inference for Beta autoregressive processes. We restrict our attention to the class of conditionally linear processes. These processes are particularly suitable for forecasting purposes, but are difficult to estimate due to the constraints on the parameter space. We provide a full Bayesian approach to the estimation and include the parameter restrictions in the inference p...

متن کامل

ON THE INFINITE ORDER MARKOV PROCESSES

The notion of infinite order Markov process is introduced and the Markov property of the flow of information is established.

متن کامل

Order Selection for the Same-realization Prediction in Autoregressive Processes

PREDICTION IN AUTOREGRESSIVE PROCESSES C. K. ING AND C. Z. WEI National Taipei University and Academia Sinica Abstract Assume observations are generated from an infinite-order autoregressive (AR) process. Shibata (1980) considered the problem of choosing a finite-order AR model, allowing the order to become infinite as the number of observations does in order to obtain a better approximation. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2012

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2011.10.008